翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

pentagonal number theorem : ウィキペディア英語版
pentagonal number theorem
In mathematics, the pentagonal number theorem, originally due to Euler, relates the product and series representations of the Euler function. It states that
:\prod_^\left(1-x^\right)=\sum_^\left(-1\right)^x^\left(3k-1\right)}=1+\sum_^\infty(-1)^k \left(1+x^k\right)x^=\sum_^\infty(-1)^k \left(1-x^\right)x^ .
In other words,
:(1-x)(1-x^2)(1-x^3) \cdots = 1 - x - x^2 + x^5 + x^7 - x^ - x^ + x^ + x^ - \cdots.
The exponents 1, 2, 5, 7, 12, ... on the right hand side are given by the formula for ''k'' = 1, −1, 2, −2, 3, ... and are called (generalized) pentagonal numbers.
This holds as an identity of convergent power series for |x|<1, and also as an identity of formal power series.
A striking feature of this formula is the amount of cancellation in the expansion of the product.
== Relation with partitions ==

The identity implies a marvelous recurrence for calculating p(n), the number of partitions of ''n'':
:p(n)=p(n-1)+p(n-2)-p(n-5)-p(n-7)+\cdots
or more formally,
:p(n)=\sum_k (-1)^p(n-g_k)
where the summation is over all nonzero integers ''k'' (positive and negative) and g_k is the ''k''th pentagonal number.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「pentagonal number theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.